
www.dspace.com

From HARA and TARA to Risk-Based
Safety and Security Dependency Testing

Roman Trentinaglia, Dr. Markus Fockel

Fraunhofer Institute for Mechatronic Systems Design IEM

Dr. Matthias Pukrop, Tobias Schaeffer

dSPACE GmbH

W H I T E PA P E R

3FROM HARA AND TARA TO RISK-BASED SAFETY AND SECURITY DEPENDENCY TESTINGFROM HARA AND TARA TO RISK-BASED SAFETY AND SECURITY DEPENDENCY TESTING2

the system of interest. The safety and
security engineering goal is to make
these so-called minimal cut sets (MCS)
as big as possible, indicating that only
the combination of many events (at-
tacks and failures) at the same time
can cause a hazard to occur. Based on
the MCS, i.e., the critical attacks and
faults, we automatically derive a list of
test cases. These test cases check if the
events contained in an MCS truly must
occur in combination or if a smaller
set of events can already lead to a
hazard. The latter would indicate that
a safety or security mechanism is not
working as intended. As a fi nal step in
our method, the test case list is used
to automatically confi gure and execute
XIL tests for the system of interest.

Example System with HARA/TARA
Results
To illustrate the method presented
in this white paper, we model an
exemplary system architecture of an
Autonomous Emergency Braking
System (AEBS) as described in UNECE
R152. We base this exemplary archi-
tecture on the reference architecture
of a driver assistance system from the
ISO 4804 standard, which describes
steps for developing and validating
automated driving systems based on
safety and security principles.

System Description
Based on these two documents, we
assume that the system looks like the
component diagram shown in Figure 2.

The figure shows a component
diagram that consists of five soft-
ware components. The first two
components (top left and top right)
represent radar and camera systems,
respectively, that are used to al-
low the vehicle to detect obstacles
while driving. Sensor inputs from
these two components are fed into
the AEBS component located in the
center of the diagram. The AEBS
calculates a brake decision based
on these sensor inputs and, if a
brake decision is made, sends cor-
responding messages to the human-
machine interface (HMI) (to display
a warning) and to the electronic
stability control (ESC) component (to
execute the actual brake command).

In addition to this purely static archi-
tectural description of the system,
we model its dynamic behavior as
modal sequence diagrams (MSDs)
[Har2008].
MSDs are specialized UML sequence
diagrams that can be used to express
requirements on the communication
messages, i.e., which messages must
be sent or received by the compo-
nents specified in the static architec-
ture. Modeling the dynamic behavior
of the system is crucial to analyze
how messages (and therefore failures
related to these messages, e.g., due
to an omitted message) propagate
through the system. Figure 3 shows
an exemplary MSD.
It consists of two messages Radar-
Data and CameraData being sent
to the AEBS component. In the
MSD syntax, these two messages
can be represented by dashed blue
arrows to indicate that a mes-
sage may be received by a compo-
nent.The messages are then pro-
cessed by the AEBS and checked
against each other for plausibility
(cf. the PlausibilityCheck fragment
on the AEBS lifeline). If the plausi-
bility check is successful, a Brake-
Decision message must be sent by
the AEBS. In the MSD syntax, this
requirement is expressed by a solid
blue arrow.

safety measures to be taken, while
ISO 21434 describes required security
measures. These standards demand
that companies establish processes to
analyze safety and security hazards and
threats, implement appropriate coun-
termeasures, and verify and validate
their effectiveness. If these processes
are carried out in isolation from each
other, there is a risk that dependen-
cies and overlaps between safety and
security are not considered.
Security attacks will lead to safety
problems, so it is essential to consider

Introduction
With the many already existing ad-
vanced driver assistance systems (ADAS)
and upcoming autonomous function-
alities, automated driving is becoming
more prevalent. These functions are
safety-critical, and failures can pose
hazards and harm people. Security
attacks on vehicles are also increasing
every year [Upstream2024].
To ensure safety and security, measures
must be implemented throughout the
entire development process. Accord-
ingly, ISO 26262 and ISO 21448 require

both aspects together to achieve safety
and security by design. But how can
we implement processes and methods
that leverage synergies and espe-
cially target the dependencies between
safety and security? How can we fi nd
test cases that specifi cally address the
conjunction of safety and security?
The development of one technical
system requires one end-to-end process
covering all relevant standards. In the
presented approach, we use a safety
and security dependency analysis to
explicitly spot safety and security de-
pendencies and automatically derive
corresponding test cases in order to
verify and validate the effectiveness of
implemented countermeasures. In this
way, the method helps to carry out a
comprehensive process covering safety
as well as security. In particular, we
describe a tool-supported method to
identify safety and security dependen-
cies, derive risk-based test cases, and
automate according XIL test confi gura-
tion and execution. Our tool-support
method also enables the automated
generation of trace links (which we will
not go into further detail in this white-
paper). Figure 1 shows an overview
of the method. Hazards and threats
identifi ed during HARA and TARA are
fed into Fraunhofer IEM’s automated
safety and security dependency analysis
[Foc2022]. This analysis automatically
derives combinations of faults and se-
curity attacks that can lead to hazards,
taking into account existing safety and
security mechanisms designed into

Safety &
security

dependency
analysis

Safety &
security

X-in-the-loop
configuration &

execution

Derive test cases for
safety & security

dependencies
Test casesCritical attacks &

faults

TARA

HARA

Hazards

Threats

Figure 1: Schematic view of the steps for our approach. Existing HARA and TARA
results are inputs of our safety & security dependency analysis which is able to auto-
matically derive test cases for relations between hazards and threats. These test cases
can be automatically executed in the existing dSPACE X-in-the-loop tool chain.

... :AEBS...

Radar Data

Plausibility Check

Brake Decision

Camera Data

Figure 3: Dynamic Behavior of the AEBS modeled as an MSD.

Figure 2: Component diagram of the AEBS.

>>

Modern vehicles are becoming more connected and autonomous, and more software-defi ned
in general. Such connectivity leads to security risks due to the increased attack surface for
external intrusions. In addition, attacks can also lead to safety hazards as cars contain
multiple safety-critical components. Therefore both safety and security must be considered
in combination. In this whitepaper, we describe a tool-supported analysis method aligned
with automotive standards to identify safety and security dependencies and automatically
derive corresponding test cases. These test cases can be imported into the existing dSPACE
tool chain to improve effi ciency by reducing time-consuming manual work and susceptibility
to errors. Thereby, our method brings together system design and testing phases to pave
the way for an integrated safety and security-by-design life cycle in the automotive domain.

54 FROM HARA AND TARA TO RISK-BASED SAFETY AND SECURITY DEPENDENCY TESTINGFROM HARA AND TARA TO RISK-BASED SAFETY AND SECURITY DEPENDENCY TESTING

HARA / TARA Results
Hazards and threats identifi ed during the
HARA, or TARA respectively, can be an-
notated to the elements in the modeled
system architecture to indicate where
they occur. Figure 2 shows that the threat
„manipulated camera data“ identifi ed
in the TARA is annotated to the camera
component. In the same way, the hazard
„no emergency braking“ is annotated
to the ESC component to express that
missing emergency braking can lead to
an accident and thus to injury to passen-
gers. The dependency analysis can then
be used to calculate whether and in what
combination with other attacks or failures
(e.g., wrong values sent from the radar
component, represented by the failure
“incorrect radar data” in Figure 2) the
manipulation attack must occur to lead
to a hazard. A test engineer should not

know the detailed design specifi cation of
the system under test. Hence, when our
method is used by a test engineer without
inputs from system engineers, they have
to make assumptions about the system
internal details or its actual implementa-
tion. We demonstrate that our method
can be used to derive test cases from
requirements, which we derived from the
generic reference architecture of the ISO
4804 without knowledge about imple-
mentation details of the system.

Safety and Security Dependency
Analysis
With the help of our safety and security
dependency analysis that was developed
as preliminary work, we are able to au-
tomatically calculate relations between
hazards and threats. Specifically, the
analysis results contain information on

how failures and attacks propagate in the
system and eventually lead to hazards.
To be able to calculate and analyze such
a failure and attack propagation, the
system’s static architecture and dynamic
communication behavior must be mod-
eled fi rst. For this step, existing artifacts
from the requirements engineering
process and early system design (e.g.,
UML component diagrams or other archi-
tectural descriptions as presented above)
can be re-used. Vice versa, if artifacts are
created exclusively for this step, they can
be re-used in subsequent development
process steps (e.g., to refi ne the system
architecture). Engineers can create a sys-
tem model directly in our tool by using
an advanced editor that is able to process
extended UML syntax.

Calculating Failure and Attack
Propagation
Using the modeled static architecture
(as a UML component diagram) and
its dynamic behavior model (as MSDs),
our tool is able to automatically calcu-
late a failure propagation model and
map identifi ed threats to actual attack
locations in it. The failure propagation
model is represented by a security-en-
hanced component fault tree (SeCFT)

[Ste2016], a special kind of fault tree
analysis model on component level tak-
ing security attacks into consideration.
Figure 4 shows an exemplary SeCFT for
our sample system. The rectangles in
the model represent its different com-
ponent fault trees (CFTs). Each compo-
nent in the input model is transformed
into a corresponding CFT. For example,
the Radar component shown in Figure
2 maps to the Radar_CFT in Figure 4.
Each CFT contains one or more so-
called failure modes for different kinds
of failures. Failure modes are denoted
as triangles on the borders of each CFT.
We differentiate between omission
(i.e., a message is not received), com-
mission (i.e., a message is received un-
expectedly) and value (i.e., a message
is received with wrong values) failures.
In our sample CFT, a failure of the radar
sensor may lead to wrong sensor values
being read by the Radar component.
This is represented by an incoming
value (V) failure of the Radar_CFT. On
the other hand, an attacker may also be
able to manipulate the camera vision,
leading to value failures of the inputs of
the Camera component. Based on the
system behavior modeled in the MSDs,
our tool is then able to calculate how

HARA/ TARA

Hazard analysis and risk assessment (HARA) is a safety activity required
by ISO 26262 to identify hazards, and threat analysis and risk assessment
(TARA) is the corresponding security activity required by ISO 21434 to
identify threats. Safety and security mechanisms are chosen based on
the HARA and TARA results, and their effectiveness has to be confi rmed
through verifi cation and validation.

these failures propagate through the
system and eventually end up in the
ESC component. If the combination of
failures may result in the brake message
not being sent by the ESC, this might
lead to the “No emergency braking”
hazard introduced in Figure 2.

Determining Critical Paths and
Minimal Cut Sets
Based on SeCFTs, critical paths of fail-
ures (i.e., failures and attacks that may
lead to a hazard) can be determined
automatically. Critical paths are all
paths of connected failure modes that
eventually end up in a hazard. In addi-
tion, to see which attacks and failures
would occur in combination, we are
also able to calculate combinations
of failures that would have to occur
simultaneously to cause a hazard. This
information is represented by so-called
minimal cut sets (MCSs). Thereby,
MCSs represent the identifi ed safety
and security dependencies. Figure 5
shows an MCS for our sample SeCFT.
Based on how the failure modes in the
SeCFT are related, our tool calculated
that a tampering with camera data has
to occur in combination with a failure
of the radar sensor (and the radar

sensor transmitting wrong values as
a result) to lead to the hazard of an
omission of emergency braking signals.

Deriving Test Cases
The minimal cut set for our sample
system suggests that tampering with
camera data alone will not lead to a
failing emergency braking but must
occur in combination with a value
failure of radar data. However, to be
sure that this is indeed the case, it
is necessary to test this assumption.
Based on the MCSs, we can therefore
generate test cases automatically,
to check whether the included fail-
ures can actually lead to a hazard
only in combination. For the test
case description, we chose a CSV
representation. CSV files offer the
advantage that they are used as a
common exchange format that can
also be inspected by humans as an
intermediate step. Thereby, the inter-
mediate test cases can be customized
and adjusted before they are fed into
the XIL tool chain. In the generated
test cases, we can further reference
the other artifacts from the safety
and security dependency analysis
process, e.g., to refer to messages

Communi-
cation
Matrix

SuT
Model

Environ-
ment
Model

Configuration Software
dSPACE Bus Manager

Description
of bus

communication

Model of the AEBS
control (System

under Test)

Model of the
environment

SIL Workflow

Bus Simulation
Container (BSC)

Simulation
Platform

dSPACE VEOS

Experiment Software
dSPACE ControlDesk

Test cases (*.csv)

Automation
Automation

optional

Test Engineer

>>

Figure 6: Schematic overview of the software-in-the-loop testing workfl ow. Starting from the test case description, an automation script creates
a suitable confi guration, including all necessary bus signals and the environment model.

Figure 5: Minimal Cut Set (MCS) calculated
from the failure propagation model shown
in Figure 4.

Figure 4: Sketch of the security-informed fail-
ure propagation model specifi ed as SeCFT.

6 7FROM HARA AND TARA TO RISK-BASED SAFETY AND SECURITY DEPENDENCY TESTINGFROM HARA AND TARA TO RISK-BASED SAFETY AND SECURITY DEPENDENCY TESTING

in the MSDs. By doing this, we can
indicate which messages have to be
sent “normally” and which have to
be left out or sent with a more spe-
cific invalid/different value.

XIL Configuration and Execution
Hardware-in-the-loop (HIL) systems
are widely used as test platforms
for electronic control units (ECU).
Especially in the automotive indus-
try where a single vehicle contains
dozens of ECUs, HIL test systems
have become an important part of
the development cycle, reducing
the need for expensive real-world
test drives and increasing the test
coverage in general. A HIL system
typically consists of real-time hard-
ware and simulation software which
together provide a realistic environ-

ment for the connected real ECU.
HIL tests are reproducible and fully
automatable, allowing 24/7 opera-
tion to reduce validation times.With
modern vehicles becoming more
software-defined, it is crucial to
test and validate software as early
as possible. Software-in-the-loop
(SIL) testing allows the user to test
software functionalities without any
ECU hardware. Systems under test
are virtual ECUs (V-ECUs) which
come in different levels [VECU].
V-ECUs can range from consisting
of just a functional model (level
0 V-ECU) up to consisting of the
final binary file meant to run on the
target hardware (level 4 V-ECU).
A SIL system typically consists of a
simulation and integration platform,
the environment simulation models,

the system under test, and a control
software. Additionally, a supported
SIL-HIL continuity in the tool chain
allows the reuse of tests in both SIL
and HIL testing scenarios. In case of
our exemplary system – the AEBS
control software prototype – we will
use a SIL environment to execute the
test cases resulting from the safety
and security dependency analysis.
The starting point is the model of
the AEBS functionality, including
the complete description of the bus
communication. Accordingly, a suit-
able test environment is a SIL test
platform which integrates the model
of the AEBS control, i.e., the system
under test (SUT), the description of
the bus communication, and the
model of the environment into an
interactive simulation.

Figure 7: Schematic overview of the system under test realized as a Simulink model. The different building blocks are visible which are sub-
components of the AEBS

During the simulation, the test engi-
neer can access all variables from both
the SUT model and the environment
model for monitoring or manipula-
tion purposes through an interactive
experiment software. Finally, the test
engineer can automatically execute
all the different test cases. In the next
section, we go through the consecu-
tive steps in the tools in more detail.

Automated Test Case Configuration
The goal of the SIL tool chain is to
enable the test engineer to run all

development is a model of the AEBS
control which implements the differ-
ent building blocks of the reference ar-
chitecture of ISO 4804: sensor fusion,
interpretation and prediction, mode
manager, drive planning. See Figure
7 for a schematic overview. For the
test engineer, the system under test
is typically a grey box, so a functional
description is known but there are no
details on the actual implementation.
The communication matrix file is a for-
mal description of the communication
between different ECUs within the ve-

pendency analysis onto the actual bus
and network signals described in the
communication matrix of the system.
Finally, a model of the environment is
needed which provides the inputs of
the AEBS functionality, i.e., the sensor
data which belongs to specific pre-
defined test scenarios. These scenarios
can be activated during the simulation.
Additionally, the environment model
contains the necessary receivers of the
output of the AEBS control, i.e., the
warning signal to the human-machine
interface and the braking signal to the

Figure 8: Screenshot of an exemplary ControlDesk layout showing a time plotter which tracks signals over time, control LEDs which track
the response behavior of the AEBS system under test, and manipulation options to simulate failures and attacks.

test cases in a suitable environment,
highly automated and without any
additional manual coding. The test
cases resulting from the safety and
security dependency analysis are de-
scribed in a .csv file – a common ex-
change format for tabular data. The
.csv file serves as one of the inputs
for the SIL testing workflow which is
depicted in Figure 6. Additionally, the
files of the function under develop-
ment, suitable environment model
files, and a communication descrip-
tion file are required. For our running
example introduced in “Example Sys-
tem with HARA/TARA Results”, the
relevant file for the function under

hicle. Depending on its usage it comes
in different “cuts”, e.g., description of
a single ECU, an ECU subnetwork, or
the entire vehicle network.
The communication matrix contains
information such as signal names,
identifiers, length, initial values, cycle
times, authentication and encryption
mechanisms, and more. For the con-
figuration of the test cases, the com-
munication matrix serves as a data-
base from which signals are selected
to be simulated normally and to be
manipulated in the actual test execu-
tion. Optionally, a mapping file can be
introduced to map the signal names
used in the safety and security de-

brake ECU.The automation interface of
the implementation tool Bus Manager
allows an automatic configuration per
test case. This includes the configuration
of all involved signals, i.e., the signals
which are received and transmitted
by the SUT, as well as features for ma-
nipulation and monitoring purposes.
The different features allow the
simulation of all the possible failures
and attacks which are in scope of
the HARA and TARA and correspond-
ingly are part of the test cases resulting
from the safety and security dependency
analysis. Finally, a container is created
consisting of the bus and network com-
munication configuration, the environ-

Figure 9: Simple 3D animation within ControlDesk to visualize a specific driving scenario providing more context to each test case.

 >>

8

© Copyright 2024 by dSPACE GmbH.

All rights reserved. Written permission is required for reproduction of all or parts of this publication. The source must be stated in any such reproduction. dSPACE is continually
improving its products and reserves the right to alter the specifications of the products at any time without notice.
"AURELION", "AUTERA", "ConfigurationDesk", "ControlDesk", "MicroAutoBox", "MicroLabBox", "SCALEXIO", "SIMPHERA", "SYNECT", "SystemDesk", "TargetLink", and "VEOS"
are registered trademarks of dSPACE GmbH in the United States of America or in other countries or both. Other brand names or product names are trademarks or registered trademarks
of their respective companies or organizations.

05/2024

Subscribe to our newsletters on www.dSPACE.com and follow us on

FROM HARA AND TARA TO RISK-BASED SAFETY AND SECURITY DEPENDENCY TESTING

Literature

[Ste2016] Steiner, M. (2016).
Integrating Security Concerns into
Safety Analysis of Embedded Sys-
tems Using Component Fault Trees.
PhD thesis, TU Kaiserslautern.

[Upstream2024] Upstream Secu-
rity: 2024 Global AutomotiveCyber
security Report, Network Security,
Volume 2024, Issue 1.

[Foc2022] Fockel, M., Schubert,
D., Trentinaglia, R., Schulz, H., &
Kirmair, W. (2022). Semi-automat-
ic Integrated Safety and Security
Analysis for Automotive Systems.
In MODELSWARD 2022.

[Har2008] Harel, D. & Maoz, S.
(2008). Assert and negate revis-
ited: Modal semantics for UML
sequence diagrams. Software &
Systems Modeling, 7(2):237–252.

[VECU]
Prostep IVIP: White Paper - SmartSE -
Virtual Electronic Control Units, 2020.

ment model, and the model of the SUT.
For our example, we use a python
automation script which reads out the
.csv file and then per test case does the
following: import all relevant files in the
Bus Manager tool, select the involved
signals, activate the necessary features,
and create the final container.

Automated Test Case Execution
For the actual test case execution, the
PC-based simulation platform VEOS is
used which enables software-in-the-
loop testing during development of
electronic control units. VEOS inte-
grates the different artefacts (V-ECU
under test, environment model, bus

leveraging capabilities of Automation-
Desk for a completely automated test
execution.

Summary and Outlook
In this whitepaper, we presented a
tool-supported method to automati-
cally derive test cases for identified
safety and security dependencies. Our
method is aligned with existing safety
and security standards of the automo-
tive domain and is designed to enable
the reuse of existing artifacts from
these processes. To improve the overall
efficiency, the generated test cases can
be imported into the existing dSPACE
testing tool chain to further reduce

Germany

dSPACE GmbH
Rathenaustraße 26
33102 Paderborn
Tel.:	 +49 5251 1638-0
Fax:	 +49 5251 16198-0
info@dspace.de

Japan

dSPACE Japan K.K.
10F Gotenyama Trust Tower
4-7-35 Kitashinagawa
Shinagawa-ku
Tokyo 140-0001
Tel.:	 +81 3 5798 5460
Fax:	 +81 3 5798 5464
info@dspace.jp

China

dSPACE Mechatronic Control
Technology (Shanghai) Co., Ltd.
Unit 01-02,06-09, 19F/L
Middle Xizang Rd. 168
The Headquarters Building
200001 Shanghai
Tel.:	 +86 21 6391 7666
Fax:	 +86 21 6391 7445
infochina@dspace.com

Korea

dSPACE Korea Co. Ltd.
16th floor, Dongwon Building
60 Mabang-ro
Seocho-gu
06775 Seoul, Republic
of Korea
Tel.:	 +82 2 570 9100
info@dspace.kr

Croatia

dSPACE Engineering d.o.o.
Ulica grada Vukovara 284
10000 Zagreb
Tel.:	 +385 1 4400 700
Fax:	 +385 1 4400 701
info@dspace.hr

Sweden

dSPACE Nordic AB
Svärdvägen 25A
SE-182 33 Danderyd
Tel.:	 +46 8-628 03 15
Fax:	 +46 8-96 73 95
sales@dspace.se

France

dSPACE SARL
7 Parc Burospace
Route de Gisy
91573 Bièvres Cedex
Tel.:	 +33 169 355 060
Fax:	 +33 169 355 061
info@dspace.fr

United Kingdom

dSPACE Ltd.
Unit B7 . Beech House
Melbourn Science Park
Melbourn
Hertfordshire . SG8 6HB
Tel.:	 +44 1763 269 020
Fax:	 +44 1763 269 021
info@dspace.co.uk

India

dSPACE India Solutions
Pvt. Ltd.
No. 214, 1st Floor
Bellary Road
Sadashivnagar
560080 Bengaluru
Tel.:	 +91 80 4113 7614
Fax:	 +91 80 4095 2259
sales@dspace.in

USA and Canada

dSPACE Inc.
50131 Pontiac Trail
Wixom . MI 48393-2020
Tel.:	 +1 248 295 4700
Fax:	 +1 248 295 2950
info@dspaceinc.com

time-consuming manual work and
the susceptibility to errors. We evalu-
ated our method on an example of an
automated emergency braking system
based on the ISO4804 standard and
have developed an end-to-end dem-
onstrator. Our method thereby paves
the way towards an integrated safety
and security-by-design life cycle in the
automotive domain. An automated
approach further helps engineers to
keep pace with developments in the
field of software-defined vehicles and
to achieve safety and security goals of
modern vehicles. The increased use
of communication technologies such
as Automotive Ethernet has influ-
ences on the interplay of attacks and
failures and places new demands on
countermeasures. Upcoming research
projects are planned to build on the
presented results and further examine
the influence of future technologies on
the intersection of safety and security.

About Fraunhofer IEM
What does the future of engineering look like? Fraunhofer IEM in Paderborn
works on convincing solutions to this question, covering the business idea,
implementation, and market success stages in the process. Through it all,
the focus is on intelligent products, production systems, services, and soft-
ware applications. Scientists take an interdisciplinary approach to working
on new methods, tools, and processes – and use innovative technologies to
ensure the long-term competitiveness of customers and partners.

Further info at www.iem.fraunhofer.de

configuration) into one executable
simulation application.The interactive
experiment software ControlDesk al-
lows access to all variables at simulation
run time and hence, enables the test
engineer to perform automated and
manual testing. Customizable layout
options help to control and visualize
the simulation. For example, Figure
8 shows a simple layout which tracks
the distance and velocity over time of
the vehicle in the front and monitors
the response behavior of the system
under test, i.e., brake request, collision
warning, and error warning, as well
as manipulation options of different
signals to simulate failures and attacks.
Additionally, Figure 9 shows a simple
3D animation within ControlDesk of
a specific driving scenario providing
more context to each test case. In our
example, the final stage is manual test
execution in ControlDesk. This stage
could be advanced even further by

Acknowledgements
This research was funded by the Min-
istry of Economic Affairs, Industry, Cli-
mate Action, and Energy of the State of
North Rhine-Westphalia (MWIKE) in the
context of the Leading-Edge Cluster
‘Intelligent Technical Systems OstWest-
falenLippe (it’s OWL)’ and supervised by
Project Management Jülich (PtJ). The
responsibility for the content of this
publication lies with the author.

Authors
Fraunhofer Institute for Mechatronic Systems

Design IEM
Dr. Markus Fockel
markus.fockel@iem.fraunhofer.de

Roman Trentinaglia
roman.trentinaglia@iem.fraunhofer.de

dSPACE GmbH
Dr. Matthias Pukrop
mpukrop@dspace.de

Tobias Schaeffer
tschaeffer@dspace.de

