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the system of interest. The safety and 
security engineering goal is to make 
these so-called minimal cut sets (MCS) 
as big as possible, indicating that only 
the combination of many events (at-
tacks and failures) at the same time 
can cause a hazard to occur. Based on 
the MCS, i.e., the critical attacks and 
faults, we automatically derive a list of 
test cases. These test cases check if the 
events contained in an MCS truly must 
occur in combination or if a smaller 
set of events can already lead to a 
hazard. The latter would indicate that 
a safety or security mechanism is not 
working as intended. As a fi nal step in 
our method, the test case list is used 
to automatically confi gure and execute 
XIL tests for the system of interest.

Example System with HARA/TARA 
Results
To illustrate the method presented 
in this white paper, we model an 
exemplary system architecture of an 
Autonomous Emergency Braking 
System (AEBS) as described in UNECE 
R152. We base this exemplary archi-
tecture on the reference architecture 
of a driver assistance system from the 
ISO 4804 standard, which describes 
steps for developing and validating 
automated driving systems based on 
safety and security principles.

System Description
Based on these two documents, we 
assume that the system looks like the 
component diagram shown in Figure 2.

The figure shows a component 
diagram that consists of five soft-
ware components. The first two 
components (top left and top right) 
represent radar and camera systems, 
respectively, that are used to al-
low the vehicle to detect obstacles 
while driving. Sensor inputs from 
these two components are fed into 
the AEBS component located in the 
center of the diagram. The AEBS 
calculates a brake decision based 
on these sensor inputs and, if a 
brake decision is made, sends cor-
responding messages to the human-
machine interface (HMI) (to display 
a warning) and to the electronic 
stability control (ESC) component (to 
execute the actual brake command).

In addition to this purely static archi-
tectural description of the system, 
we model its dynamic behavior as 
modal sequence diagrams (MSDs) 
[Har2008]. 
MSDs are specialized UML sequence 
diagrams that can be used to express 
requirements on the communication 
messages, i.e., which messages must 
be sent or received by the compo-
nents specified in the static architec-
ture. Modeling the dynamic behavior 
of the system is crucial to analyze 
how messages (and therefore failures 
related to these messages, e.g., due 
to an omitted message) propagate 
through the system. Figure 3 shows 
an exemplary MSD. 
It consists of two messages Radar-
Data and CameraData being sent 
to the AEBS component. In the 
MSD syntax, these two messages 
can be represented by dashed blue 
arrows to indicate that a mes-
sage may be received by a compo-
nent.The messages are then pro-
cessed by the AEBS and checked 
against each other for plausibility 
(cf. the PlausibilityCheck fragment 
on the AEBS lifeline). If the plausi-
bility check is successful, a Brake-
Decision message must be sent by 
the AEBS. In the MSD syntax, this 
requirement is expressed by a solid 
blue arrow. 

safety measures to be taken, while 
ISO 21434 describes required security 
measures. These standards demand 
that companies establish processes to 
analyze safety and security hazards and 
threats, implement appropriate coun-
termeasures, and verify and validate 
their effectiveness. If these processes 
are carried out in isolation from each 
other, there is a risk that dependen-
cies and overlaps between safety and 
security are not considered. 
Security attacks will lead to safety 
problems, so it is essential to consider 

Introduction
With the many already existing ad-
vanced driver assistance systems (ADAS) 
and upcoming autonomous function-
alities, automated driving is becoming 
more prevalent. These functions are 
safety-critical, and failures can pose 
hazards and harm people. Security 
attacks on vehicles are also increasing 
every year [Upstream2024].
To ensure safety and security, measures 
must be implemented throughout the 
entire development process. Accord-
ingly, ISO 26262 and ISO 21448 require 

both aspects together to achieve safety 
and security by design. But how can 
we implement processes and methods 
that leverage synergies and espe-
cially target the dependencies between 
safety and security? How can we fi nd 
test cases that specifi cally address the 
conjunction of safety and security? 
The development of one technical 
system requires one end-to-end process 
covering all relevant standards. In the 
presented approach, we use a safety 
and security dependency analysis to 
explicitly spot safety and security de-
pendencies and automatically derive 
corresponding test cases in order to 
verify and validate the effectiveness of 
implemented countermeasures. In this 
way, the method helps to carry out a 
comprehensive process covering safety 
as well as security. In particular, we 
describe a tool-supported method to 
identify safety and security dependen-
cies, derive risk-based test cases, and 
automate according XIL test confi gura-
tion and execution. Our tool-support 
method also enables the automated 
generation of trace links (which we will 
not go into further detail in this white-
paper). Figure 1 shows an overview 
of the method. Hazards and threats 
identifi ed during HARA and TARA are 
fed into Fraunhofer IEM’s automated 
safety and security dependency analysis 
[Foc2022]. This analysis automatically 
derives combinations of faults and se-
curity attacks that can lead to hazards, 
taking into account existing safety and 
security mechanisms designed into 
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Figure 1: Schematic view of the steps for our approach. Existing HARA and TARA 
results are inputs of our safety & security dependency analysis which is able to auto-
matically derive test cases for relations between hazards and threats. These test cases
can be automatically executed in the existing dSPACE X-in-the-loop tool chain.
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Figure 3: Dynamic Behavior of the AEBS modeled as an MSD.

Figure 2: Component diagram of the AEBS.

>>

Modern vehicles are becoming more connected and autonomous, and more software-defi ned 
in general. Such connectivity leads to security risks due to the increased attack surface for 
external intrusions. In addition, attacks can also lead to safety hazards as cars contain 
multiple safety-critical components. Therefore both safety and security must be considered 
in combination. In this whitepaper, we describe a tool-supported analysis method aligned 
with automotive standards to identify safety and security dependencies and automatically 
derive corresponding test cases. These test cases can be imported into the existing dSPACE 
tool chain to improve effi ciency by reducing time-consuming manual work and susceptibility 
to errors. Thereby, our method brings together system design and testing phases to pave 
the way for an integrated safety and security-by-design life cycle in the automotive domain.
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HARA / TARA Results
Hazards and threats identifi ed during the 
HARA, or TARA respectively, can be an-
notated to the elements in the modeled 
system architecture to indicate where 
they occur. Figure 2 shows that the threat 
„manipulated camera data“ identifi ed 
in the TARA is annotated to the camera 
component. In the same way, the hazard 
„no emergency braking“ is annotated 
to the ESC component to express that 
missing emergency braking can lead to 
an accident and thus to injury to passen-
gers. The dependency analysis can then 
be used to calculate whether and in what 
combination with other attacks or failures 
(e.g., wrong values sent from the radar 
component, represented by the failure 
“incorrect radar data” in Figure 2) the 
manipulation attack must occur to lead 
to a hazard. A test engineer should not 

know the detailed design specifi cation of 
the system under test. Hence, when our 
method is used by a test engineer without 
inputs from system engineers, they have 
to make assumptions about the system 
internal details or its actual implementa-
tion. We demonstrate that our method 
can be used to derive test cases from 
requirements, which we derived from the 
generic reference architecture of the ISO 
4804 without knowledge about imple-
mentation details of the system. 

Safety and Security Dependency 
Analysis
With the help of our safety and security 
dependency analysis that was developed 
as preliminary work, we are able to au-
tomatically calculate relations between 
hazards and threats. Specifically, the 
analysis results contain information on 

how failures and attacks propagate in the 
system and eventually lead to hazards. 
To be able to calculate and analyze such 
a failure and attack propagation, the 
system’s static architecture and dynamic 
communication behavior must be mod-
eled fi rst. For this step, existing artifacts 
from the requirements engineering 
process and early system design (e.g., 
UML component diagrams or other archi-
tectural descriptions as presented above) 
can be re-used. Vice versa, if artifacts are 
created exclusively for this step, they can 
be re-used in subsequent development 
process steps (e.g., to refi ne the system 
architecture). Engineers can create a sys-
tem model directly in our tool by using 
an advanced editor that is able to process 
extended UML syntax.

Calculating Failure and Attack 
Propagation
Using the modeled static architecture 
(as a UML component diagram) and 
its dynamic behavior model (as MSDs), 
our tool is able to automatically calcu-
late a failure propagation model and 
map identifi ed threats to actual attack 
locations in it. The failure propagation 
model is represented by a security-en-
hanced component fault tree (SeCFT)

[Ste2016], a special kind of fault tree 
analysis model on component level tak-
ing security attacks into consideration. 
Figure 4 shows an exemplary SeCFT for 
our sample system. The rectangles in 
the model represent its different com-
ponent fault trees (CFTs). Each compo-
nent in the input model is transformed 
into a corresponding CFT. For example, 
the Radar component shown in Figure 
2 maps to the Radar_CFT in Figure 4. 
Each CFT contains one or more so-
called failure modes for different kinds 
of failures. Failure modes are denoted 
as triangles on the borders of each CFT. 
We differentiate between omission 
(i.e., a message is not received), com-
mission (i.e., a message is received un-
expectedly) and value (i.e., a message 
is received with wrong values) failures. 
In our sample CFT, a failure of the radar 
sensor may lead to wrong sensor values 
being read by the Radar component. 
This is represented by an incoming 
value (V) failure of the Radar_CFT. On 
the other hand, an attacker may also be 
able to manipulate the camera vision, 
leading to value failures of the inputs of 
the Camera component. Based on the 
system behavior modeled in the MSDs, 
our tool is then able to calculate how 

HARA/ TARA

Hazard analysis and risk assessment (HARA) is a safety activity required 
by ISO 26262 to identify hazards, and threat analysis and risk assessment 
(TARA) is the corresponding security activity required by ISO 21434 to 
identify threats. Safety and security mechanisms are chosen based on 
the HARA and TARA results, and their effectiveness has to be confi rmed 
through verifi cation and validation.

these failures propagate through the 
system and eventually end up in the 
ESC component. If the combination of 
failures may result in the brake message 
not being sent by the ESC, this might 
lead to the “No emergency braking” 
hazard introduced in Figure 2.

Determining Critical Paths and
Minimal Cut Sets
Based on SeCFTs, critical paths of fail-
ures (i.e., failures and attacks that may 
lead to a hazard) can be determined 
automatically. Critical paths are all 
paths of connected failure modes that 
eventually end up in a hazard. In addi-
tion, to see which attacks and failures 
would occur in combination, we are 
also able to calculate combinations 
of failures that would have to occur 
simultaneously to cause a hazard. This 
information is represented by so-called 
minimal cut sets (MCSs). Thereby, 
MCSs represent the identifi ed safety 
and security dependencies. Figure 5 
shows an MCS for our sample SeCFT. 
Based on how the failure modes in the 
SeCFT are related, our tool calculated 
that a tampering with camera data has 
to occur in combination with a failure 
of the radar sensor (and the radar 

sensor transmitting wrong values as 
a result) to lead to the hazard of an 
omission of emergency braking signals.

Deriving Test Cases
The minimal cut set for our sample 
system suggests that tampering with 
camera data alone will not lead to a 
failing emergency braking but must 
occur in combination with a value 
failure of radar data. However, to be 
sure that this is indeed the case, it 
is necessary to test this assumption. 
Based on the MCSs, we can therefore 
generate test cases automatically, 
to check whether the included fail-
ures can actually lead to a hazard 
only in combination. For the test 
case description, we chose a CSV 
representation. CSV files offer the 
advantage that they are used as a 
common exchange format that can 
also be inspected by humans as an 
intermediate step. Thereby, the inter-
mediate test cases can be customized 
and adjusted before they are fed into 
the XIL tool chain. In the generated 
test cases, we can further reference 
the other artifacts from the safety 
and security dependency analysis 
process, e.g., to refer to messages 
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Figure 6: Schematic overview of the software-in-the-loop testing workfl ow. Starting from the test case description, an automation script creates 
a suitable confi guration, including all necessary bus signals and the environment model.

Figure 5: Minimal Cut Set (MCS) calculated 
from the failure propagation model shown 
in Figure 4.

Figure 4: Sketch of the security-informed fail-
ure propagation model specifi ed as SeCFT.
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in the MSDs. By doing this, we can 
indicate which messages have to be 
sent “normally” and which have to 
be left out or sent with a more spe-
cific invalid/different value.

XIL Configuration and Execution
Hardware-in-the-loop (HIL) systems 
are widely used as test platforms 
for electronic control units (ECU). 
Especially in the automotive indus-
try where a single vehicle contains 
dozens of ECUs, HIL test systems 
have become an important part of 
the development cycle, reducing 
the need for expensive real-world 
test drives and increasing the test 
coverage in general. A HIL system 
typically consists of real-time hard-
ware and simulation software which 
together provide a realistic environ-

ment for the connected real ECU. 
HIL tests are reproducible and fully 
automatable, allowing 24/7 opera-
tion to reduce validation times.With 
modern vehicles becoming more 
software-defined, it is crucial to 
test and validate software as early 
as possible. Software-in-the-loop 
(SIL) testing allows the user to test 
software functionalities without any 
ECU hardware. Systems under test 
are virtual ECUs (V-ECUs) which 
come in different levels [VECU]. 
V-ECUs can range from consisting 
of just a functional model (level 
0 V-ECU) up to consisting of the 
final binary file meant to run on the 
target hardware (level 4 V-ECU). 
A SIL system typically consists of a 
simulation and integration platform, 
the environment simulation models, 

the system under test, and a control 
software. Additionally, a supported 
SIL-HIL continuity in the tool chain 
allows the reuse of tests in both SIL 
and HIL testing scenarios. In case of 
our exemplary system – the AEBS 
control software prototype – we will 
use a SIL environment to execute the 
test cases resulting from the safety 
and security dependency analysis. 
The starting point is the model of 
the AEBS functionality, including 
the complete description of the bus 
communication. Accordingly, a suit-
able test environment is a SIL test 
platform which integrates the model 
of the AEBS control, i.e., the system 
under test (SUT), the description of 
the bus communication, and the 
model of the environment into an 
interactive simulation. 

Figure 7: Schematic overview of the system under test realized as a Simulink model. The different building blocks are visible which are sub-
components of the AEBS

During the simulation, the test engi-
neer can access all variables from both 
the SUT model and the environment 
model for monitoring or manipula-
tion purposes through an interactive 
experiment software. Finally, the test 
engineer can automatically execute 
all the different test cases. In the next 
section, we go through the consecu-
tive steps in the tools in more detail.

Automated Test Case Configuration
The goal of the SIL tool chain is to 
enable the test engineer to run all 

development is a model of the AEBS 
control which implements the differ-
ent building blocks of the reference ar-
chitecture of ISO 4804: sensor fusion, 
interpretation and prediction, mode 
manager, drive planning. See Figure 
7 for a schematic overview. For the 
test engineer, the system under test 
is typically a grey box, so a functional 
description is known but there are no 
details on the actual implementation. 
The communication matrix file is a for-
mal description of the communication 
between different ECUs within the ve-

pendency analysis onto the actual bus 
and network signals described in the 
communication matrix of the system. 
Finally, a model of the environment is 
needed which provides the inputs of 
the AEBS functionality, i.e., the sensor 
data which belongs to specific pre-
defined test scenarios. These scenarios 
can be activated during the simulation. 
Additionally, the environment model 
contains the necessary receivers of the 
output of the AEBS control, i.e., the 
warning signal to the human-machine 
interface and the braking signal to the 

Figure 8: Screenshot of an exemplary ControlDesk layout showing a time plotter which tracks signals over time, control LEDs which track 
the response behavior of the AEBS system under test, and manipulation options to simulate failures and attacks.

test cases in a suitable environment, 
highly automated and without any 
additional manual coding. The test 
cases resulting from the safety and 
security dependency analysis are de-
scribed in a .csv file – a common ex-
change format for tabular data. The 
.csv file serves as one of the inputs 
for the SIL testing workflow which is 
depicted in Figure 6. Additionally, the 
files of the function under develop-
ment, suitable environment model 
files, and a communication descrip-
tion file are required. For our running 
example introduced in “Example Sys-
tem with HARA/TARA Results”, the 
relevant file for the function under 

hicle. Depending on its usage it comes 
in different “cuts”, e.g., description of 
a single ECU, an ECU subnetwork, or 
the entire vehicle network. 
The communication matrix contains 
information such as signal names, 
identifiers, length, initial values, cycle 
times, authentication and encryption 
mechanisms, and more. For the con-
figuration of the test cases, the com-
munication matrix serves as a data-
base from which signals are selected 
to be simulated normally and to be 
manipulated in the actual test execu-
tion. Optionally, a mapping file can be 
introduced to map the signal names 
used in the safety and security de-

brake ECU.The automation interface of 
the implementation tool Bus Manager 
allows an automatic configuration per 
test case. This includes the configuration 
of all involved signals, i.e., the signals 
which are received and transmitted 
by the SUT, as well as features for ma-
nipulation and monitoring purposes.  
The different features allow the 
simulation of all the possible failures 
and attacks which are in scope of 
the HARA and TARA and correspond-
ingly are part of the test cases resulting 
from the safety and security dependency 
analysis. Finally, a container is created 
consisting of the bus and network com-
munication configuration, the environ-

Figure 9: Simple 3D animation within ControlDesk to visualize a specific driving scenario providing more context to each test case.

 >>
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ment model, and the model of the SUT. 
For our example, we use a python 
automation script which reads out the 
.csv file and then per test case does the 
following: import all relevant files in the 
Bus Manager tool, select the involved 
signals, activate the necessary features, 
and create the final container.

Automated Test Case Execution
For the actual test case execution, the 
PC-based simulation platform VEOS is 
used which enables software-in-the-
loop testing during development of 
electronic control units. VEOS inte-
grates the different artefacts (V-ECU 
under test, environment model, bus 

leveraging capabilities of Automation-
Desk for a completely automated test 
execution.

Summary and Outlook
In this whitepaper, we presented a 
tool-supported method to automati-
cally derive test cases for identified 
safety and security dependencies. Our 
method is aligned with existing safety 
and security standards of the automo-
tive domain and is designed to enable 
the reuse of existing artifacts from 
these processes. To improve the overall 
efficiency, the generated test cases can 
be imported into the existing dSPACE 
testing tool chain to further reduce 
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time-consuming manual work and 
the susceptibility to errors. We evalu-
ated our method on an example of an 
automated emergency braking system 
based on the ISO4804 standard and 
have developed an end-to-end dem-
onstrator. Our method thereby paves 
the way towards an integrated safety 
and security-by-design life cycle in the 
automotive domain. An automated 
approach further helps engineers to 
keep pace with developments in the 
field of software-defined vehicles and 
to achieve safety and security goals of 
modern vehicles. The increased use 
of communication technologies such 
as Automotive Ethernet has influ-
ences on the interplay of attacks and 
failures and places new demands on 
countermeasures. Upcoming research 
projects are planned to build on the 
presented results and further examine 
the influence of future technologies on 
the intersection of safety and security.
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configuration) into one executable 
simulation application.The interactive 
experiment software ControlDesk al-
lows access to all variables at simulation 
run time and hence, enables the test 
engineer to perform automated and 
manual testing. Customizable layout 
options help to control and visualize 
the simulation. For example, Figure 
8 shows a simple layout which tracks 
the distance and velocity over time of 
the vehicle in the front and monitors 
the response behavior of the system 
under test, i.e., brake request, collision 
warning, and error warning, as well 
as manipulation options of different 
signals to simulate failures and attacks. 
Additionally, Figure 9 shows a simple 
3D animation within ControlDesk of 
a specific driving scenario providing 
more context to each test case. In our 
example, the final stage is manual test 
execution in ControlDesk. This stage 
could be advanced even further by 
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